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Modifying slightly Kubo's formulation of perturbation theory to take care of the fact 
that generalized susceptibility may not be zero at infinite frequency, we establish, in 
the classical limit, a general relation between covariance and generalized susceptibility. 
The relation is then applied to evaluate the covariances of the magnetic flux, currents, 
and magnetization of a superconducting cylinder. Expressions for the spectra of 
magnetic flux and magnetization are also obtained. 
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1. I N T R O D U C T I O N  

One of the developments in the theory of irreversible processes is the expression 
in closed form of generalized susceptibilities in terms of  the correlation functions. (1> 
After calculating (e. g., by the help of the Greens function technique) the correlation 
functions microscopically, we arrive at an expression for the generalized susceptibility 
(or complex admittance) to a mechanical perturbation such as a magnetic or electric 
field. Modern physics is full of such instances. Sometimes, it is more convenient, 
however, to evaluate the generalized susceptibilities and then express the correlations 
in terms of these susceptibilities. The case of  a superconducting cylinder is such an 
example. Due to the existence of boundaries, it is rather mathematically involved to 
evaluate the time correlation functions microscopically. With some simplifying 
assumptions, it is, however, straightforward to derive explicit expressions for 
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the generalized susceptibilities. Then, variances and covariances can be obtained 
with the aid of the relations that connect them to generalized susceptibilities. 

The fluctuation-dissipation theorem Ig) provides a well-known contact between 
the generalized susceptibility of a quantity and its spectrum. Between generalized 
susceptibility and the cross-spectrum of two quantities, an analogously simple 
relationship cannot always be established. We need to know in more detail about 
the time reversibility of the quantities involved. In Section 2, however, by modifying 
slightly Kubo's formalism to take care of  the fact that ~BA(oO)=F5 0, we establish, 
in the classical limit, a general relation between the generalized susceptibility, ~sA(o)), 
and the cross-spectrum of A and B. When co = 0, a particularly simple relation 
between the generalized susceptibility and the covariance of A and B can be derived. 
This relation is utilized in Section 3 to evaluate covariances of the magnetic flux, 
currents, and magnetization of a superconducting cylinder. In Section 4, we employ 
the fluctuation-dissipation theorem to evaluate the spectra of magnetic flux and  
magnetization. The main cause of fluctuation lies in the random scattering of excita- 
tions (normal electrons) by lattices and impurities in the superconductors. Although 
the average of the current carried by the normal electrons in the absence of a time- 
dependent field is zero, this normal component of current fluctuates about its average 
value. Such fluctuations, in turn, give rise to fluctuations in the magnetic flux and 
in the component of the current carried by the Cooper pairs. 

Vant-Hull et  al/a~ have measured the fluctuation of magnetic flux in a tin rod. 
The variation of the standard deviation of magnetic flux (rms value of the magnetic 
noise) with temperature is shown in Fig. 1. The solid curve is plotted according to the 
theoretical expression (30a) in Section 3. According to this expression, the thermal, 
magnetic noise does not disappear when the metal becomes superconducting. With 
the dimensions of the tin rod used in the experiment (10 cm • 0.47 cm diameter), 
we expect the standard deviation to drop more than an order of magnitude from its 
normal-state value as the order of (T~ - -  T ) /To  becomes greater than 10 -5. While there 
is no contradiction between our theory and the experiment, more accurate data 
are needed to decide whether our theory is an adequate one to describe the magnetic 
fluctuations in superconducting cylinders. We hope that the present work can stimulate 
more efforts in this direction. As pointed out by Vant-Hull et  al., ~a~ the existence 
of thermal magnetic noise has serious implications in the design of magnetic shielding 
and for magnetometry in the submicrogauss regime; better understanding about the 
thermal magnetic fluctuations is therefore important. 

2. C O R R E L A T I O N  A N D  G E N E R A L I Z E D  S U S C E P T I B I L I T Y  

Kubo has introduced a very convenient formalism connecting time correlation 
function and generalized susceptibility ~A(o~). In the case lim~o~ ~A(CO)-~-0, his 
formalism, however, needs to be slightly modified. We keep to linear approximation. 
An operator for a physical quantity ~ in the presence of an external force F( t )  can 
then be written, in general, in the form s 

For example, the current density in an infinite medium in the presence of an external field is 

j(r, t) = i(r, t) + (e2/mc)~(r, t)+~(r, t)A(r, t) 

where [ = (e/im)[gz+V7 ~ - (Vgt+)ku]. In this case, X = (e2/mc)VS(r, t)+gt(r, t), and h is set to be 1. 
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B = / 9  + XF(0 (1) 

where/9  and X are operators that  do not  involve F(t) explicitly. Suppose the pertur- 
bation energy can be written as J f ' ( t )  = --AF(t). The linear response is observed 
through the change AB(t), which can be expressed as m 

zJB(t) = ~ A ( t  -- C) F(C) dC 

where the aftereffect function (9BA( t  - -  l ' )  differs f rom Kubo's ,  

(~.A(t) = q~,A(t) + 2X~(t) (2) 

~BA(I) is Kubo ' s  aftereffect function, m defined by 

~A(t)  =- <[A, B(t)]> (3) 

~ [_ ~A OB(t) OA OB(t) l (Classical) 
Oqi ~P~ Oqg Oq~ [A, B(t)] 

--i[AB(t)]_ =- --i[AB(t) -- B(t) A] (Ouantal) 

The generalized susceptibility c~nA(co ) is given by 

co 

OdBA(EO ) = lira f OBA(t) e -li~+ale dt 
O~O 0 

= ~BA(W) -5 <Y> (4) 

where ~BA(~O) is defined by 

8B~(oJ) = lira [~ ~,A(t) e -(i~+~)t dt (5) 
t3-~O d 0 

In the case ~BA(t) possesses no delta-function at t = 0 and is almost piecewise 
continuous (see, e.g., Le Page (4)) for  t > O, lim~o_~ 8~A(O)) = O. In such cases, 3 

o r  

lira C~BA(~O) = </](> (6) 
03~o0 

c~ 

~B.4(co) --  ~BA(OO) = lim f q~sA(t) e -(~~ dt 
~ 0  0 

In the classical limit, m 

q~BA(t) = --fi<AB(t)) 

(7) 

3 For example, for systems with localized electromagnetic response, j~(r) = -Q(~)A~(r), where 
--Q(oJ) is the generalized susceptibility, and limo~o~ Q(w) = ne2/mc ~ = -(X>. (See the appendix.) 



308 I't. C.  Leung 

where/3 =~ 1/k~T. As (AB(t))  is expected to be a continuous function, ~BA(t) d o e s  

not possess any delta-function characteristic. We shall keep to classical limit. 
Equation (7) can be written in the form 

co 

c~Ba(o, ) -- e~BA(OO) = lim f O(t) q~BA(t) e -i~176 dt 
8-*0 --c~ 

where O(t) is a step function, 

1, t > 0  
o ( t )  = 0, t < 0 (s) 

Putting O(t) in an integral form, and changing the order of integration, we have 

. - i f  ~ do,, f~ 
O ~ B A ( o ,  ) - -  O L B A ( O 0 )  = hm - a - -  ~ _ dt[~Ba(t) e x p ( - - i o , ' t ) ]  ~+o Art _~ o , - -  i8 _~ 

~ do,' co' ifio, 
- -  S . ~ ( o , ' )  - & ~ ( o , )  

= - 5  2 ~  o, - o,' - ~ -  
(9) 

where S~A(o,) is the cross-spectrum of A and B, defined by 

oo 

SaA(o,) = f (AB( t ) )  e -i~ dt 
--oo 

(lO) 

The second equality in (9) follows from the relation (5) 

co 

i ~ (o(t) e -i~ dt =- --it3o, f (AB( t ) )  e -'~~ dt 
�9 3 --o0 --o0 

This is the general, but rather involved, relationship between suceptibility and the 
cross-spectrum of two quantities. In case SBA(o,) is real, we have (2) 

&A(o, )  = - - k , , T  • 2[Im{~BZo,)}l/o, (11) 

We have used the fact that Im{c~BA(o,)} is an odd function of frequency and 
therefore vanishes at co = oo. When A = B, SBA(O,) is always real and we have the 
familiar fluctation-dissipation theorem. Eqation (11) is in general much simpler 
than (9), as it does not involve the principal value of an integral of the cross-spectrum. 
In general, however, S~A is not reap and (11) is not true. Nevertheless, some simple 
and general relationship can be established between generalized susceptibility and 
covariance. From (9), putting co = 0, we obtain 

~.~(0) - ~.~(oo) = / 3  f do,' [SB~(o,')/2~] 
-or? 

4 For example, in the case B = dA/dt, SBA(~O) is pure imaginary. 
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This follows from the fact that SBA(W) has no pole at co -~ 0. Therefore, we obtain 

Cov(A, B) = k,T[~.~(O) - -  o~,~(~)] (12) 

In the particular case A = B, coy(A, B) becomes the variance of A. (6,7~ To arrive 
at 12, we have implicitly assumed lim~_~=(AB(t)> = <A)(B>. As pointed out by 
Kubo, (1) this need not be the case unless the degrees of freedom associated with the 
observed quantities A and B are much smaller than those of the total system. In 
Sections 3 and 4, where Eq. (12) is going to be applied, we can assume that a heat 
reservoir has also been included in the unperturbed system. In this way, we ensure the 
validity of the relation lim~-~oo<AB(t)) -~ <A>(B). 

In order to obtain (12), we only made use of the continuity of <AB(t)>. However, 
we can mention in passing that, should <A/~(t)) possess a delta-function at t = 0 
[i.e., (AB(t)) = (2(X1)6(t) + f ( t ) ] ,  it produces no additional mathematical difficulty. 
Equation (12) is simply modified to 

~(0 )  - -  o~(~) -~ f i < A B ( O + ) >  - -  ( A > ( B >  (13) 

In this hypothetical case, ~(oo) is equal to ((XI> + (X>) instead of <X>. 

3. F L U C T U A T I O N S  IN SUPERCONDUCTING CYLINDER 

3.1. Magnetic Flux 

To avoid mathematical complications, we limit ourselves to superconductors 
where the electromagnetic response is localized/s) Pure Type I superconductors 
near the critical temperature, pure Type II superconductors, and dirty superconductors 
fall in this category. (9) In the case of Type II superconductors, the average magnetic 
field is limited to values much smaller than the lower critical field (z~ H~z so as to 
avoid the spatially inhomogeneous vertex state (or Schubnikov phase). In such a case, 
the current density and the vector potential are related by cs,xl~ 

j ~ ( r )  - -  -- Q(co) A~(r) (14) 

where j~(r) and A~(r) are respectively the Fourier transform of the response of the 
current density, Aj(r, t), and the Fourier transform of the response of the vector 
potential, AA(r, t), with AA(r, t) = [A(r, t) -- A(r)] and Aj(r, t) = [j(r, t) -- ~(r)]. 
Here, A(r, t) and j(r, t) are respectively the average of the vector potential operator 
and the average of the current density operator in the presence of an external time- 
dependent magnetic feld, ~,(r) and ~(r) are the averages of these operators when 
there is no time-dependent external magnetic field, and Q(~o) is a function of co. 
In this section, we only need the value of Q(eo) at co = 0 and co = co. At co = 0, 
for superconductors with localized electromagnetic response, (4~/c) Q((o) is usually 
expressed as 

(47r/c) Q(0) = A~ ~ (15) 
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where )t, is the London penetration depth at temperature T. At co = o% it is shown 
in the appendix that 

l~m (4rr/e) Q(~o) = 1//~ "2 (16) 

where A--~ AL(0)= [md/4rme2] ~/2 and AL(0) is the London penetration depth at 
zero temperature, with n the total electron density. 

Consider a long cylinder with width d, outer radius b, inner radius a, and length s 
(~r >> b). There is no assumption about the values of a, b, and d except that we can 
assume the magnitude of the order parameter, and hence superconducting electron 
density, to be spatially constant. This assumption is reasonable as long as ~(T) is 
greater than the smaller of A(T) or the width d, where ~(T) is the coherence length {12) 
at temperature T. Within the coherence length, we can assume the density to be 
constant. For Type I superconductors, it is always true that ~(T) > A(T). For Type II 
superconductor, we have to satisfy ~(T) > d [or ~:(T) > b for a solid cylinder]. 

A homogeneous, external magnetic field is placed parallel to the axis of the 
cylinder. We assume that the external field consists of two parts, a static field H,  
and a time-dependent part Hoe ~ .  With the axis of symmetry as the z axis, we introduce 
the cylindrical coordinates (r, 0, z). We use the approximation that the current 
only flows in the 0 direction so that the current, vector potential, and other relevant 
physical quantities depend only on r. We can then choose a gauge to make the 
vector potential A(r) have the form [0, A(r), 0]. Remembering that A(r) = [0, A(r), 0], 
and with the aid of the Maxwell equation 

V • V • A(r, t) = (47r/c) j(r, t) (17) 

and the boundary conditions (la) 

[V • A(r, t)]~=o = Ho ei~ @ H s (18) 

iV • A(r, t)],.=~ = (2/a) A(a) (19) 

we obtain 

where 

Ao~(r) = q-lO(o))-I [Kz(qa) I~(qr) q- I~(qa) K~(qr)l H0 (2o) 

D(oo) = Io(qb ) K~(qa) -- I2(qa) Ko(qb) (21) 

q = [(4~/e) Q(oo)] 1/~ (22) 

L and K, are modified Bessel's functions of order v. The static (14) value ~(r) 
can be obtained from (17)-(19) by putting H0 ---- 0; i.e., 

.4(r) = {(l/2~rr) -- OtJrra~DD[Ko(b/h,) Ii(rlAO + Io(blAs) Kl(r/A3]} ~t 

q- (As/D3[Kz(a/A,) I~(r/2~) + I2(a/A,) K~(r/A~)] H, (23) 

where q)~ = lhe/2e is the fluxoid (l is an integer), (15) and 

D, = Io(b/A,) K=(a/h,) -- I~(a/a,) Ko(b/A~) (24) 
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The Fourier component of the total magnetic flux response [qSt(t)-  ~t] of the 
system is 

~,o = 2rrbAo~(b) 

= [2rrb/qD(co)][K2(qa) I~(qb) + I2(qa) Kl(qb)] Ho (25) 

Consider an external field produced by a current 1o in a long solenoid. A long 
superconducting cylinder is placed inside the solenoid, coaxial to the external field. 
The force acting on the external current [0 due to the presence of the cylinder is given 
by (1/c)(d/dt)(~ -- ~bo), where q~t is the total flux in the cylinder. Therefore, the rate 
of absorption of energy is given by ([o/C)d(q)~ -- ~o)/dt. The perturbation term (2~ 
in the Hamiltonian is then given by-?0(q~ -- r The generalized susceptibility c~%(co) 
is defined as 

c~r = r ) (26) 

Using Eq. (25), and remembering that Ho = 4rrio/5~c, a%(co) is given by 

ae,(co) = [8~r2b/L,q~ qD(co)][K~(qa) 11(@) + I2(qa) K~(qb)] (27) 

To evaluate the variance of the flux, we have only to calculate ~%(0) and a%(oo). 
At co = 0, q = l/A,, and 

~r = [8rr2bA,/~'D,l[K2(a/A~) Ii(b/A~) @ I2(b/A,) Kl(b/A~)] (28a) 

where D, is defined by (24). At co = c~, q = l/A, and 

~ ( o o )  = (8~r2b~/~LPDa)[K2(a/h) Ii(b/A ) + I2(a/k ) Kl(b/)t)] 

where 

Da = K~(a/A) Io(b/h) -- 12(a/h) Ko(b/h) 

(28b) 

(29) 

We notice that c%(oe) has the same value whether we are dealing with superconducting 
or normal cylinders. The reason for this is that, when hco >~ A, the energy gap has 
little effect in influencing electromagnetic absorption. Therefore, the superconductor 
behaves like a normal conductor at high frequency. In the case where corn >~ 1, 
the normal metal behaves like a free-electron gas. The same remarks apply to the 
generalized susceptibilities of the other quantities we consider later. 

It is good approximation (2,16) to use classical relations for a quantity satisfying 
kBT > l/r ,  where r is the time for that quantity to relax to its steady-state value. 
For T = 3~ this condition is satisfied by r > 3 • 10 -12. For  a very pure metal, 
the momentum relaxation time % is of order 10 -1~ sec. and the time for the magnetic 
flux, currents, etc. to relax to their metastable values are usually longer than % .  
Therefore, for most situations of practical interest, we can use the classical relation 
Eq. (12). Even for the cases of dirty, or very thin, cylinders, where % is a few orders 
smaller than 10 -1~ sec, the condition kBT > 1/r can still be kept, under proper 
considerations. In Section 4, further discussion of relaxation times is given. 
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Using  Eq. (12), it  is s t ra igh t forward  to o b t a i n  5,6 

Var(q)t) = (87r2b/Sr kBT{(~#D3[K~(a/A 3 I~(b/A~) + I2(a/,~) K~(b/,~)] 

-- (A/D~)[K2(a/A) I~(b/A) 4:- Iz(a/2t) K~(b/A)]} (30) 

W h e n  T ~> T~, the  cyl inder  becomes  n o rma l .  Therefore ,  As = ee. W e  have  then,  
f r o m  Eq. (30), 

V a r ( ~  0 = (8~rZb/5?) kBT{(bl2) -- (AIDa)[K~(a/)t) I~(bl)t) @ I2(alA) KI(blA)]} 

W e  can  see tha t  the va r iance  changes  c o n t i n u o u s l y  w h e n  the  me ta l  passes f r o m  the  

s u p e r c o n d u c t i n g  to the n o r m a l  phase.  
F o r  a solid s u p e r c o n d u c t i n g  cyl inder ,  we pu t  a = 0 in  (30), a n d  the  var iance  of  

the magne t i c  flux in the cyl inder  becomes  

Var(q)t) : 8~r2b k~T [ hs/~(b/A~) 
~ -  ~o(b/~ ~) 

all(bA) 
Io(b/)t) ] (30a) 

When the fluxoid (z~) is not zero, the variance Var(~b 0 is a measure of the fluctuation of the magnetic 
flux q~, about its metastable value, not about its true equilibrium value. The time needed for, say, 
magnetic flux, to relax to its true equilibrium value is equal to the lifetime % of the persistent 
current. % is so very much longer than the time for the magnetic flux to relax back to its metastable 
value that, for our purposes, we can assume that the system shall never return to its true equilibrium 
values. Thus, we can evaluate Var(O~,) as if it is fluctuating about an equilibrium average. 
As (19) implies, spatial homogeneity of the field in the hole of the cylinder, (30) is, strictly speaking, 
only valid for a < e~- where ~- is the relaxation time of qh and c is the velocity of light. 

I 0 q5 

L~ 
d3 
LO ld6 

L_ 

~d7 I 

I0-18 ~ I 

theoEy (normal metal) 

m 
O 
(D 
z: 

I , ,  I I t 
3,4~ 3.6~ 3.~~ 

TEMPERATU RE 

Fig. 1. Thermal magnetic noise in metal rods. 
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The variation of Var(q~,) with temperature is plotted in Fig. 1 according to (30a), 
with 5 ~ = 10 cm and b ----- 0.235 cm. With these values, the magnetic noise is the 
same for all the solid metal rods in normal phase. For normal metal rods, Var(~,) 
is represented in Fig. 1 by a dashed line when the temperature is lower than 3.72~ 
and by a solid line when the temperature is greater than 3.72~ The solid line 
represents the magnetic noise in the tin rod, which undergoes a phase transition 
at 3.72~ Near the critical temperature, )t/As is approximated by [2(1 -- T/Ts)] 1/2. 
According to (30a), the thermal fluctuations of magnetic flux do not disappear when 
the rod becomes superconducting. However, with the given values of ~ and b, 
Var(q~t) drops more than an order of magnitude when (1 -- TITs) is greater than 10 -5. 
Vant-Hull et al. t3) have measured the thermal magnetic noise of metal rods with the 
dimensions given above. While there is no contradiction between our theory and the 
experimental data, more accurate measurements are needed to decide whether or 
not our theory is adequate to describe the thermal magnetic noise in cylinders. 

For a thin cylinder (G,m such that a >~ As >~ d and ad/2h ~ >~ 1, the variance of 
the magnetic flux for a superconducting cylinder becomes, near the critical temperature, 
where As >~ ~, 

Var(q~,) = ckBTL/[1 -}- (Rd/2A~z)] 

where L is the self-inductance of a thin cylinder: L = 4~r2R2/c~. In the case of very 
thin cylinders (n) such that a >~ As and A ~ d, 

Var(~O = cksTL Rd/2An2 
(1 + Rd/2As~)(1 + Rd/2)t ~) 

For the case a, d ~ As, we have 

Var(q~t) = 8~-2b(h8 -- A)kBT/~ 

The Fourier component of the total response current [I(rt) -- i(r)] is given by 

I~ = --(cq~/47r) fbaA(r) dr 

, -  c{[2/q~a2D(oo)]- 1}(i0/c ) (31) 

Therefore, the covariance is given by Eq. (12), with A = c/)~ and B = L 

Coy(/, ~t) = (2ck~T/a2)[(A~2/Ds) -- (A2/Da)] (32) 

For very thin cylinders such that a >~ A~ and d >~ A, we have 

Cov(/, q~) = ckBT Rd/2An~ 
(1 + Rd/2A2)(1 + Rd/2;~s 2) 

Denote the magnetic field in the hollow of the cylinder by Hi.  For a long cylinder, 
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can be considered spatially constant. The Fourier transform of [ H i ( t ) - / 7 ]  
is given by 

H,~ = (2/a) A~(a) 

=: [8rr/a22,eq2D(oJ)]([o/C) 

Therefore, using Eq. (12) with A = @~ and B = Hi ,  

Cov(H~, @~) -- (Szr/~a~)[()t}/D~) --  (AZ/D~)] kBT (33) 

This expression, in fact, can be obtained from Eq. (32) by aid of the relation 

Hio, = ~r0 + ( 4 , , / ~ c ) L  

When the cylinder is in the normal phase, the covariance becomes 

Cov(H~, Ct)~ = (Srr/~f aO[(a2/2) --  (A2/Da)] kBT 

The variation of Coy(Hi, ~b~)/Cov(H~, d~t)~ with temperature is illustrated in Fig. 2 
for cases where b/A = 100, a/b = 0.1, 0.5, and 0.9. It is of no special significance 
that this particular ratio of b/A is chosen. It is chosen simply to be specific. 

For thin cylinders, Cov(@~, ~ , )  = Var(@t) = Var(qSi) where ~ = ,ra2H~. 

10 -1 

-- ]- I --[--~ [ ] 
! 

~ = 1 0 0  

l / / 
-1 

:z- 

~o_2 

~i-  

F < 
O o ]0_3 ? 

/ 

i 

_ _ I  

J 

_J 

,99 .995 

T/T~ 

Fig. 2. Variation of the covariance of Hi and r with 
temperature in hollow, superconducting cylinders. 
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3.2. Magnetization 

The perturbation term in the Hamiltonian due to the external field 
written as 

~e"(t) = --  f ~ol m(r)  Ho(t)  d3r = --  MH o( t )  (34) 

where re(r) is the magnetic moment of the cylinder at r and M is the total magnetiza- 
tion of the system. In the presence of the external magnetic field, Ho(t ) = 11o e~t ,  
a magnetic moment M~e ~ is established, and M~ is given by 

b 

Mo~ = (Trc~q~/c) J r2J~o(r) dr (35) 
a 

The generalized susceptibility ~v(CO) of the magnetic moment is defined by 

Hence, 

O~M(~O ) = M,o/H o 

can be 

Var(M) = 

From Eq. (31), Io, can be written as 

R 2 ~  ' k B T  
4 1 + (Rd/2A 2) 

I~ = Ho(~c/4zr){[2/q2a2D(co)] - -  1} 

aM(CO) = --[b2~/4D(c~)][I2(qb) K2(qa) - -  I2(qa) K2(qb)] (36) 

For superconducting cylinders, the variance of the magnetic moment is given by (12) 
and (36), 

Var(M) = (b~LP/4){D;I[I2(b/A) K2(a/A) - -  I2(a/A) K2(b/A)]} 

- -  D~I[I2(b/A.~) K2(a/A~) --  I2(a/hs) K2(b/A~)]} k B T  (37) 

where Ds is defined by (24) and D~ by (29). For a normal metal, aM(O) = 0, and 
we have 

Var(M) = (b2~/4Da)[Iz(b/A) K2(a/A) - -  I2(a/A) K2(b/h)] k ~ T  

In the case where the cylinder is not hollow, (6) we obtain, by putting a = 0, 

C~M(~O) = --(b25r I2(qb)/Io(qb) 

The variance of the magnetic moment of the superconducting solid cylinder is given by 

b 2 ~  [ I2(b/A) I~(b/A.~) ] 
Var(M) k B T  

In the limit of a thin cylinder, i.e., a ~ A~ ~ d and ad/2A 2 ~ 1, we have, near the 
critical temperature, where h.~ ~ h, 
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Therefore, 

~M(CO) = (c~/4rr){[2/q2a~D(co)] - -  l} 

Using Eq. (12) with A = M and B = I, we have 

Coy(M, Z) = ( ~ c k ~ T / 2 , , a ~ ) [ ( A ? / D 3  --  A~/D~] (38) 

Equations (27) and (36); (30) and (37); and (32) and (38) are, in fact, not independent. 
Using (17)-(19) and the definition of magnetization (35), it is straightforward to 
show that 

qP~o = 2rrbA~(b) = rrb2Ho + 47r(M/Sf) (39) 

This is just another form of the well-known relation 

B = H +  4rrm 

where B is magnetic flux density, H is magnetic field, and m is the magnetization per 
unit volume. 

Using (39), it is easy to show that (36) can be derived from (27), (37) from (30), 
and (38) from (32). 

4. SPECTRA A N D  R E L A X A T I O N  OF M A G N E T I C  F L U X  
A N D  M A G N E T I Z A T I O N  

To evaluate the spectra, we are going to use the London two-fluid model, (~s-2n 
which is valid for superconductors with localized electromagnetic response. From 
the two-fluid model, the current density and the vector potential are related by 

J~(r) = -- Q(co) a~(r) (40) 

where 

47r Q(co) = 1 1 ico 
-7-  ~ + Aj [ico + (1/~n)] 

A~ = (mc2/47rn~e2)l/2, An = (mc2/4r a/2 

with n~ the electron density in the excited state, and -r~ is the momentum relaxation 
time of the normal electrons. We observe that, at co = 0 and co = 0% we obtain (15) 
and (16), which have been derived without using the two-fluid model. The low- 
frequency (co < k~T, e/a) 7 spectrum of the magnetic flux is given by (11) and (27), 

S~(co) = -- (167r~b/2,e)(kB T/co) 

• Im{[1/qD(co)][K2(qa) II(qb) + h(qa) K1(qb)]} (41) 

where q2 = (47r/c) Q(co). The autocorrelation function is given by 

Cov[~t(t), q~t(0)] = ( [ ~ t ( t ) -  ~t][r -- ~t]> 
P c o  

= / do, [d'~tS,~,(co)/27r] 
J 

7 The boundary condition (19) requires ~o < c/a. 
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To go further, we have to consider some limiting cases. In the case of thin cylinder, 
I q [ d > ~ l  a n d l q l a > ~  1, wehave  

S~(oJ) --  2ck~TL Rd/2A'~2 1 
~-, (1 + Rdl2)t~) 2 co~ + (11-~ ~) 

where L is the self-inductance, L = 4~r2R2/c~. The autocorrelation function is then 
given by 

Rd/2A"2 e-I~ii* (42) 
Cov[~t(t), ~t(O)] = ckBTL (1 + Rd/2A~2)(1 + Rd/2~ ~) 

where 

T ----- [(1 + Rd/2A2)/(1 -t- Rd/2A~2)] ~~ (43) 

Above the critical temperature, the relaxation time becomes 

rn' = [1 + (Rd/2A2)] r ,  

This is the relaxation time for the magnetic flux in a normal metal cylinder. Usually, 
Rd/2k 2 is much greater than one, and r~ can then be written in the familiar form 

rn' = L/cR~ 

where Rn is resistance and L is the self-inductance. 
Consider a dirty film where % is, say, of the order 10 -13 sec. Then, 1/rn is greater 

than kBT. However, in most realistic cases, Rd/2h 2 is much greater than one, and 
we can find a certain range of temperature near Tc such that 

[1 + (Rd/2A~)]/[1 + (Rd/2A~2)] -c, > 1/k~T 

is valid. For example, when 1 >~ knT~',~ >~ 22~2/Rd, the temperature range where the 
classical limit is valid is given by 

�89 > 1 -- T/Tc 

In the case of solid cylinder, the spectrum of the magnetic flux simplifies to 

S~,(oo) = --(167r2b/~)(kBT/o)) Im{Ii(qb)/qlo(qb)} 

The peak value of S~,(o)) at co ---- 0 is equal to 

16rr2b r~as 3 2Ii(b//~s) b [[ Iz(b/As)~ 2 --  1]} 
s<~,(o) = k~T~-- ~ I So(b/;~D ~.< t t ~ s  

At T = T~, the peak value becomes 

,S~,(0) = k B r ~ ( 1 6 ~ b / ~ )  ~,A(b/Za) 3 

The variation of  S~,(co)/S~,(O) with o~-r, is plotted in Fig. 3 for b/h = 100, T~/T = 0.8, 
0.9, and 0.98. The relation )t/A~ = {211 -- (T/T~)]} ~/2 has been used. From the line- 

82zlz/4-z 
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Fig. 3. Spectra of magnetic flux in a solid, superconducting cylinder. 

shape of the spectrum, we notice that the relaxation time ~- of ~t in a solid super- 
conducting cylinder increases with temperature. When T/Tc -~ 0.9, ~- is about an 
order higher than ~-~. When T/T~ = 0.98, ~- is two order higher. The variation of 
S~(O)/~S~t(O ) with T/T~ is plotted in Fig. 4 for b/)t = 100. 

Using (40), the Fourier transform of the superconducting component of the 
current response is 

I~  = (c/2t~2q2){[2/q2a2D(eJ)] -- 1}([o/C) 

Using (12) with A = # ,  and B = / 8 ,  the covariance of the superconducting compo- 
nent of the current and the total magnetic flux is found to be 

oov. , _- ( 
A~ 2 ) ,  
D~ )t2Da ) -- - -~  ] ck, T (44) 

)2 

Since Cov(I~, qb~) is equal to the difference between Coy(I, ~bt) and Cov(I~, ~O, 
we obtain from (32) and (44) an expression for the covariance between the normal 
component of the current and the total magnetic flux: 

Cov(I. ,  0b,) = (Z2/A.9[1 -- (212/a2D~)] ck .T  
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Fig. 4. Variation of magnetic 
flux at zero frequency with temperature in a solid, 
superconducting cylinder. 

Similarly, the spectrum for magnetization is given by (11) and (36): 

Si(oJ) = ksT(b2LP/2) Im{[1/D(~o)l[I2(qb) K2(qa) -- Iz(qa) K2(qb)]} (45) 

For a thin cylinder, the autocorrelation function is 

Rz ~ Rd/2~2 e-~ /�9 (46) 
Cov[M(t), M] = knT 4 (1 + Rd/22t~)(1 + Rd/2~, 2) 

where r is defined by (43). Equations (41) and (45), (42) and (46) are connected by (39). 

A P P E N D I X  

We can derive an expression for Q(o)) at o~ = oo from the perturbation theory 
by following very closely the arguments of Martin and Schwinger. (2~) From pertur- 
bation theory, the current density is given by 

c o  

(j.(r, t)) = ~ K(r, t; r', t') A>(r', t') dar ' dr' 
v - - s o  

(A1) 
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where 
c o  

oJcr(o~) ~ --  �89 f dt [e -~7( t ) l  (A5) 
- - c o  

Due to conservation of charge, we have 

c o  

--iV3(r -- r') ~ doo {[exp ioJ(t - -  t')] cr(co)/rr} = e([p(r, t), j(r, t)]_) (A6) 
- - c o  

where p(r, t) is the density operator. 
Applying the commutat ion rule to the right-hand side of (A6), we obtain the 

sum rule by comparing both sides: 

c o  

f d~o [cr(co)/Tr] = neZ/m (A7) 

where n --~ (p)  is the electron density of  the metal. With the aid of  (A4) and the 
sum rule (A7), the kernel (A2) can be written as 

t l K.~(r, t; r ,  t') = - -~.f i ( r  -- r') c ~-  3_~ ~" [~(~o) exp ico(t - -  t')] (A8) 

Substituting (A8) into (A1) we obtain the Fourier transform of (j(r, t)): 

job(r) = - -  Q ( o ) )  A,o(r )  

where Q(o~) is given by 

f f Q(oo) = (ico/c) dt [e-~O(t)]  d,5 [e~,~(~5)/~-I 
- - o ~  - - c o  

320 

where the electromagnetic response kernel is defined by 

K.~(rt; r ' t ')  ---- (i/c) O(t - -  t ' )([j .(r ,  t), j~(r', t ')]) 

-- 8.v ~(r -- r') 3(t -- t')(ne~/mc) (A2) 

O(t) is a unit step function defined by (8); n is the electron density. 
As we are only interested in superconductors with localized electromagnetic 

response, we can write 

<[j.(r, t), jv(r', t')]_> = 3.v 3(r --  r') */(t -- t') (A3) 

The factor ~.~ is due to isotropy of the medium. Equation (A3) can be written as 

([j .(r ,  t),j~(r', t ')]_) = (a/at) i 3.v a(r - r') 

• dw {[exp ico(t - -  t')] ~(oJ)/Tr} (A4) 
- - c o  
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After  some s t ra ight forward  computa t ion ,  

Q(o)) = - c -  _~o ~ c o - ~ - H T  
(7((.O) 

As Im{Q({o)} is an  odd  funct ion o f  co, it  vanishes at  co ---- ~ .  Therefore,  a(co) goes to  
zero faster  than  co -1 as co --~ oo. Hence,  as co ~ 0% we have {23} 

f 
r 

l ira Q(oJ) = lira Re{Q(w)} = d{5 [a(os)/z,c] = ne2/mc 

or (4~r/c) Q(oo) = 1 / t  ~, which is Eq. (16). In  the  der iva t ion  of  lim~_~ Q(co), we need 
no t  make  any dist inct ion between superconduc tor  and  no rma l  metal .  The  above  
arguments  also apply  to thin films. 

In  Sections 3 and 4, we have simply denoted  ( j(r ,  t ) )  by j(r, t). 

A C K N O W L E D G M E N T  

The au thor  grateful ly 
R. E. Burgess. 

acknowledges  some very valuable  r emarks  o f  Prof.  

REFERENCES 

1. R. Kubo, J. Phys. Soe. Japan 13:570 (1957). 
2. L. D. Landau and E. M. Liftshitz, Statistical Phystcs, Pergamon Press, New York (1958), 

Chapter 12. 
3. L. Vant-Hull, R. A. Simpkins, and J. T. Harding, Phys. Letters 24A:736 (1967). 
4. W. R. Le Page, Complex Variables and Laplace Transform for Engineers, McGraw-Hill Publishing 

Co., New York (1961), 8-5, 10-12, 10-16. 
5. R. Kubo, Rept. Progr. Phys. 29(Part 1):255 (1966). 
6. R. E. Burgess, Can. J. Phys. 47:2583 (1969). 
7. A. G. Sitenko, Electrodynamic Fluctuations in Plasma, Academic Press, New York (1967), 

pp. 15, 31. 
8. J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108:1175 (1957). 
9. P. G. De Gennes, Theory of  Superconductivity, W. A. Benjamin, New York (1964), I-4, 6-1. 

10. A. A. Abrikosov, Soviet Phys. JETP 5:I174 (1957); K. Maki, Physics 1:127 (1964). 
11. P. G. De Gennes, Theory o f  Superconductivity, W. A. Benjamin, New York (1964), p. 226; 

K. Maki, Progr. Theoret. Phys. (Kyoto) 29:333 (1963); 31:731 (1964); R. D. Parks (ed.), 
Superconductivity, Marcel Dekker, New York (1969), p. 1035. 

12. P. G. De Gennes, Theory of  Superconductivity, W. A. Benjamin, New York (1964), 6-4. 
13. D H Douglass, Jr., Phys. Rev. 132:513 (1963). 
14. H. J. Lipkin, M. Peshkin, and L. J. Tassie, Phys. Rev. 126:116 (1962); V. L. Ginzburg, Soviet 

Phys.--JETP 15:207 (1962); L. T. Hsii and G. F. Zharkov, Soviet Phys.--JETP 17:462 (1963). 
15. F. London, Superfluids, Vol. 1, Dover Publications, New York (1961), p. 151; N. Byers and 

C. N. Yang, Phys. Rev. Letters 7:46 (1961); L. Ousager, Phys. Rev. Letters 7:50 (1961); W. 
Brenig, Phys. Rev. Letters 7:337 (1961). 

16. R. E. Burgess, Proe. Conference on Fluctuations in Superconductors, Asilomar (1968), pp. 47 79. 
17. R. E. Burgess, Proe. Symposium on Physics of  Superconducting Devices, Charlottesville (1967), 

pp. H1-H17. 



322 M .C .  Leung 

18. F. London, Superfluids, Vol. 1, Dover Publications, New York (1967), p. 29. 
19. J. Bardeen, Phys. Rev. Letters 1:399 (1958). 
20. M. J. Stephen, Phys. Rev. 139A:197 (1965). 
21. A. Schmidt, Phys. Kondensierten Mater& 5:302 (1966). 
22. P. C. Martin and J. Schwinger, Phys. Rev. 115:1342 (1959). 
23. L. P. Kadanoff and P. C. Martin, Phys. Rev. 124:670 (1959); A. W. B. Taylor, Proc. Phys. Soc. 

(London) 78:1372 (1962). 


